DOLCIT/RSRG Seminar
Online reviews are often our first port of call when considering products and purchases online. Yet navigating huge volumes of reviews (many of which we might disagree with) is laborious, especially when we are interested in some niche aspect of a product. This suggests a need to build models that are capable of capturing the complex and idiosyncratic semantics of reviews, in order to build richer and more personalized recommender systems. In this talk I'll discuss three such directions: First, how can reviews be harnessed to better understand the dimensions (or facets) of people's opinions? Second, how can reviews be used to answer targeted questions, that may be subjective or require personalized responses? And third, how can reviews themselves be synthesized, so as to predict what a reviewer would say, even for products they haven't seen yet?