skip to main content

CMX Special Seminar

Thursday, November 15, 2018
4:00pm to 5:00pm
Add to Cal
Annenberg 314
Multi-model Communication and Data Assimilation for Mitigating Model Error and Improving Forecasts
Sam Stechmann, Professor, Department of Mathematics, University of Wisconsin-Madison,

Models for weather and climate prediction are complex, and each model typically has at least a small number of phenomena that are poorly represented, such as perhaps the Madden–Julian Oscillation (MJO) or El Niño–Southern Oscillation (ENSO) or sea ice. Furthermore, it is often a very challenging task to modify and improve a complex model without creating new deficiencies. On the other hand, it is sometimes possible to design a low-dimensional model for a particular phenomenon, such as the MJO or ENSO, with significant skill, although the model may not represent the dynamics of the full weather– climate system. Here a strategy is proposed to mitigate these model errors by taking advantage of each model's strengths. The strategy involves inter-model data assimilation, during a forecast simulation, whereby models can exchange information in order to obtain more faithful representations of the full weather–climate system. As an initial investigation, the method is examined using a simplified scenario of linear models, involving a system of stochastic partial differential equations (SPDEs) as an imperfect tropical climate model and stochastic differential equations (SDEs) as a low-dimensional model for the MJO. It is shown that the MJO prediction skill of the imperfect climate model can be enhanced to equal the predictive skill of the low-dimensional model. Such an approach could provide a route to improving global model forecasts in a minimally invasive way, with modifications to the prediction system but without modifying the complex global physical model itself. The methods may also be applicable to other settings where multiple models can be used together to improve predictions.

For more information, please contact Sabrina Pirzada by phone at (626) 395-2813 or by email at [email protected] or visit CMx Website.