CMX Lunch
We present fast spectral solvers for time-domain Partial Differential Equations. Based on a novel Fourier-Continuation (FC) method for the resolution of the Gibbs phenomenon, these methodologies give rise to time-domain solvers for PDEs for general engineering problems and structures. The methods enjoy a number of desirable properties, including spectral time evolution essentially free of pollution or dispersion errors for general PDEs in the time domain, with conditional/unconditional stability for explicit/alternating-direction methods and high order of temporal accuracy. A variety of applications to linear and nonlinear PDE problems will be presented, including the diffusion and wave equations, the Navier-Stokes equations and the elastic wave equation, demonstrating the significant improvements the new algorithms can provide over the accuracy and speed resulting from other approaches.