
 
	  



JANUARY 29 
9:00am  Introduction Venkat Chandrasekaran 

Caltech 

9:15am Approximate MCMC in Theory and Practice James Johndrow 
Stanford University 

10:15am Coffee Break 

10:45am Sparse Linear Algebra in the Exascale Era Erin Carson 
New York University 

1:00pm Interactive Algorithms for Multiple Hypothesis Testing Aaditya Ramdas 
UC Berkeley 

2:00pm Coffee Break 

2:30pm Imaging the Invisible Katie Bouman 
MIT 

3:30pm Coffee Break 

4:00pm Machine Learning By the People, For the People Nika Haghtalab 
Carnegie Mellon University 

ALL TALKS ARE ONE HOUR LONG, AND WILL BE HELD IN ANNENBERG 105. 
COFFEE BREAKS WILL BE HELD IN THE ANNENBERG LOBBY.  



FEBRUARY 5 
9:00am  Introduction Venkat Chandrasekaran 

Caltech 

9:15am Securing Computation on Untrusted Platforms Justin Holmgren 
MIT 

10:15am Coffee Break 

10:45am An Algorithm for Overcoming the Curse of 
Dimensionality in Hamilton-Jacobi Equations 

Yat Tin (Raymond) Chow 
UCLA 

1:00pm Large Sample Asymptotics of Graph-Based Methods in 
Machine Learning:  
Mathematical Analysis and Implications 

Nicolas Garcia Trillos 
Brown University 

2:00pm Coffee Break 

2:30pm A Conditional Gaussian Framework for Uncertainty 
Quantification, Data Assimilation and Prediction of 
Complex Nonlinear Turbulent Dynamical Systems 

Nan Chen 
New York University 

3:30pm Coffee Break 

4:00pm Inverse Problems and Unsupervised Learning  
with Applications to Cryo-Electron Microscopy 

Roy Lederman 
Princeton University 

ALL TALKS ARE ONE HOUR LONG, AND WILL BE HELD IN ANNENBERG 105. 
COFFEE BREAKS WILL BE HELD IN THE ANNENBERG LOBBY.  



Imaging the Invisible 
 

Katie Bouman 
Massachusetts Institute of Technology

Imaging plays a critical role in advancing science. However, as science continues to 
push the boundaries of knowledge, traditional imaging approaches are reaching 
observational limits. In this talk I discuss how combining ideas from physics, signal 
processing, and machine learning has allowed us to transcend these limits in order to 
see people moving behind walls and take the first picture of a black hole. 
 
It is theorized that the heart of the Milky Way galaxy is host to a evolving black hole. 
An image of this black hole could help to address a number of important scientific 
questions. Unfortunately, due to its small size, traditional imaging approaches require 
an Earth-sized radio telescope. In this talk, I discuss techniques we have developed to 
photograph the black hole using a network of telescopes scattered across the globe. 
Imaging the black hole’s rapidly evolving structure with this computational telescope 
requires us to reconstruct video from sparse measurements, heavily corrupted by 
atmospheric error. Additionally, I present an evaluation process developed to establish 
confidence in reconstructions done with real scientific data. These methods and 
evaluation techniques are currently being applied in ongoing work to take the first 
picture of a black hole as part of the Event Horizon Telescope collaboration.
 

 
Biography:
Katie Bouman is a postdoctoral fellow in the Harvard-Smithsonian 
Center for Astrophysics. She recently received her Ph.D. in the 
Computer Science and Artificial Intelligence Laboratory (CSAIL) at 
MIT. Before coming to MIT, she received her bachelor's degree in 
Electrical Engineering from the University of Michigan. The focus 
of her research is on using emerging computational methods to 
push the boundaries of interdisciplinary imaging.
 
	  



Sparse Linear Algebra in the Exascale Era 
 

Erin Carson 
New York University

Sparse linear algebra problems, typically solved using iterative methods, are ubiquitous throughout 
scientific and data analysis applications and are often the most expensive computations in large-
scale codes due to the high cost of data movement. Approaches to improving the performance of 
iterative methods typically involve modifying or restructuring the algorithm to reduce or hide this 
cost. Such modifications can, however, result in drastically different behavior in terms of convergence 
rate and accuracy. A clear, thorough understanding of how inexact computations, due to either finite 
precision error or intentional approximation, affect numerical behavior is thus imperative in balancing 
the tradeoffs between accuracy, convergence rate, and performance in practical settings.  
 
In this talk, we focus on two general classes of iterative methods for solving linear systems: Krylov 
subspace methods and iterative refinement. We present bounds on the attainable accuracy and 
convergence rate in finite precision s-step and pipelined Krylov subspace methods, two popular 
variants designed for high performance. For s-step methods, we demonstrate that our bounds on 
attainable accuracy can lead to adaptive approaches that both achieve efficient parallel performance 
and ensure that a user-specified accuracy is attained. We present two such adaptive approaches, 
including a residual replacement scheme and a variable s-step technique in which the parameter s is 
chosen dynamically throughout the iterations. Motivated by the recent trend of multiprecision 
capabilities in hardware, we present new forward and backward error bounds for a general iterative 
refinement scheme using three precisions. The analysis suggests that on architectures where half 
precision is implemented efficiently, it is possible to solve certain linear systems up to twice as fast 
and to greater accuracy.  
 
As we push toward exascale level computing and beyond, designing efficient, accurate algorithms 
for emerging architectures and applications is of utmost importance. We discuss extensions to 
machine learning and data analysis applications, the development of numerical autotuning tools, 
and the broader challenge of understanding what increasingly large problem sizes will mean for 
finite precision computation both in theory and practice.

 
Biography:
Erin Carson is a Courant Instructor/Assistant Professor at the Courant 
Institute of Mathematical Sciences at New York University. She received 
her PhD at the University of California, Berkeley in 2015, advised by 
James Demmel and Armando Fox and supported by a National 
Defense Science and Engineering Graduate Fellowship. Her research 
interests lie at the intersection of high-performance computing, 
numerical linear algebra, and parallel algorithms, with a focus on 
analyzing tradeoffs between accuracy and performance in algorithms 
for large-scale sparse linear algebra.
	  	  
 
	  



A Conditional Gaussian Framework for 
Uncertainty Quantification, Data Assimilation and Prediction 

of Complex Nonlinear Turbulent Dynamical Systems 
 

Nan Chen 
New York University

A conditional Gaussian framework for uncertainty quantification, data assimilation and 
prediction of nonlinear turbulent dynamical systems is developed. Despite the conditional 
Gaussianity, the dynamics remain highly nonlinear and are able to capture strongly non-
Gaussian features such as intermittency and extreme events in nature. The conditional 
Gaussian structure allows efficient and analytically solvable conditional statistics that 
facilitates the real-time data assimilation and prediction. The talk will include three 
applications of such conditional Gaussian framework. In the first part, a physics-constrained 
nonlinear stochastic model is developed, and is applied to the data assimilation and the 
prediction of the Madden-Julian oscillation with strongly intermittent features. The second 
part regards the state estimation and uncertainty quantification of multiscale and turbulent 
ocean flows using noisy Lagrangian tracers. Rigorous analysis shows that an exponential 
increase in the number of tracers is required for reducing the uncertainty by a fixed amount. 
This indicates a practical information barrier. In the last part of the talk, an efficient statistically 
accurate algorithm is developed that is able to solve the high dimensional Fokker-Planck 
equation with strong non-Gaussian features within the conditional Gaussian framework and 
beat the curse of dimensions.

  
Biography:
Nan Chen is currently a postdoc research associate at Courant Institute of Mathematical 
Sciences (CIMS) and Center of Atmosphere and Ocean Science (CAOS), New York 
University. 
 

Chen received his PhD degree in Mathematics and Atmosphere and Ocean Science at 
CIMS and CAOS, New York University in 2016. His thesis advisor was Dr. Andrew J. 
Majda. Chen was awarded the Kurt O. Friedrichs prize in May 2016 for an out standing 
dissertation in mathematics. Chen's undergraduate major was Mechanical Engineering 
and he received a Master's degree from the School of Mathematical Sciences, Fudan 
University. He also spent one year visiting the Department of Scientific Computing, 
Florida State University, collaborating with Dr. Max Gunzberger and Dr. Xiaoming Wang. 
 

Chen's research lies in the contemporary applied mathematics, fluids and geophysics. 
Problems with large dimensions, turbulence and partial information are particularly what 
he is concerned with. Mathematical and physical problems in uncertainty quantification, 
data assimilation, applied stochastic analysis, inverse problems, high-dimensional data 
analysis and effective prediction all belong to his research topics. He is also devoted to 
proposing efficient and statistically accurate algorithms to ameliorate the curse of 
dimensionality for large-dimensional complex systems with strong non-Gaussian 
features. In addition, He is active in developing both dynamical and stochastic models 
and use these models to predict real-world phenomena related to atmosphere ocean 
science, climate and other complex systems such as the Madden-Julian Oscillation 
(MJO), the monsoon and the El Nino Southern Oscillation (ENSO) based on real 
observational data. Some of his works have been attracted by media attention.
 

	  



An Algorithm for Overcoming the Curse of 
Dimensionality in Hamilton-Jacobi Equations  

 
Yat Tin (Raymond) Chow 

University of California, Los Angeles

In this talk, we discuss an algorithm to overcome the curse of dimensionality, in 
possibly non-convex/time/state-dependent Hamilton-Jacobi partial differential 
equations.  They may arise from optimal control and differential game problems, and 
are generally difficult to solve numerically in high dimensions.  
 
A major contribution of our works is to consider an optimization problem over a single 
vector of the same dimension as the dimension of the HJ PDE.  To do so, we consider 
the new approach using Hopf-type formulas.  The sub-problems are now 
independent, and they can be implemented in an embarrassingly parallel fashion.  
That is ideal for perfect scaling in parallel computing.  
 
The algorithm is proposed to overcome the curse of dimensionality when solving high 
dimensional HJ PDE. Our method is expected to have application in control theory, 
differential game problems, and elsewhere.  This approach can be extended to the 
computational of a  Hamilton-Jacobi equation in the Wasserstein space, and is 
expected to have applications in mean field control problems, optimal transport and 
mean field games.

 
Biography:
I am currently a CAM Assistant Professor in Department of Mathematics,  
UCLA. I received my Bachelor’s degree in 2009, my Master’s degree in  2012, 
and my Ph.D. in Mathematics in 2015, from the Chinese University  of Hong 
Kong.  I have been working on overcoming the curse of  dimensionality in 
solving Hamilton-Jacobi equations arising in optimal  control and differential 
games, which may extend to problems including  optimal transport and mean 
field games. I have also been working on  optimization methods, e.g. 
coordinate update methods.  Moreover, I have  worked on inverse problems, 
in particular, coefficient determinations in  partial differential equations, which 
has applications in many areas,  for instance, tomography (e.g. electrical 
impedance tomography). 
	  



Large Sample Asymptotics of 
Graph-Based Methods in Machine Learning:  

Mathematical Analysis and Implications 
 

Nicolas Garcia Trillos 
Brown University

Many machine learning procedures aimed to extract information from data can be defined as 
precise mathematical objects that are constructed in terms of the data. It is often assumed 
that the data is “big” in complexity but also in quantity, and in this “large amount of data’’ 
setting, a basic mathematical concept that one can explore is that of closure of a given class 
of statistical procedures (i.e. what are the limiting procedures as the number of data points 
available goes to infinity.) In this talk, I will explore this notion in the context of graph-based 
methods. Examples of such methods include minimization of Cheeger cuts, spectral 
clustering, and graph-based bayesian semi-supervised learning, among others.  I will 
introduce some of the mathematical ideas needed for the analysis, as well as show some of 
the implications of it: our results show statistical consistency of the methods, provide with 
quantitative information in the form of scaling of parameters and rates of convergence, imply 
qualitative properties at the discrete level, and suggest the use of appropriate algorithms.  

Following the same line of thought, I will then show how ideas from optimal transport can be 
used to define a large class of evolution equations on graphs, and present some theoretical 
results that connect them with their continuum limits; I will then indicate the relationship 
between these mathematical constructs and the analysis of large sample asymptotics of 
other types of machine learning methodologies.  

I will finish my talk suggesting some future directions for research, both at the theoretical 
level as well as at the practical level (analysis of real data).

 

 
Biography:
Nicolas Garcia Trillos obtained his PhD in Mathematical Sciences from 
Carnegie Mellon University in 2015 and his bachelor’s degree in Mathematics 
from Los Andes University in Bogota, Colombia, in 2010.  He is currently at 
Brown University for his last year of a three year post-doctoral position in the 
Division of Applied Mathematics. His research interests are in applied 
analysis, probability, and statistics. In his research work, he uses tools from 
mathematical analysis to study machine learning problems. He finds the 
concept of artificial intelligence fascinating from many different perspectives 
including literature.  He likes to read short stories, play soccer and tennis, go 
on walks through city streets and forests, spend time with his wife and watch 
her put color on her canvases.



Machine Learning By the People, For the People 
 

Nika Haghtalab 
Carnegie Mellon University

Typical analysis of learning algorithms considers their outcome in isolation from the 
effects that they may have on the process that generates the data or the entity that is 
interested in learning. However, current technological trends mean that people and 
organizations increasingly interact with learning systems, making it necessary to 
consider these effects, which fundamentally change the nature of learning and the 
challenges involved. In this talk, I will explore three lines of research from my 
work on the theoretical aspects of machine learning and algorithmic economics that 
account for these interactions: learning optimal policies in game-theoretic settings, 
without an accurate behavioral model, by interacting with people; managing people's 
expertise and resources in data-collection and machine learning; and 
collaborative learning in a setting where multiple learners interact with each other to 
discover similar underlying concepts. 

 
Biography:
Nika Haghtalab is a Ph.D. candidate at the Computer Science 
Department of Carnegie Mellon University, co-advised by Avrim 
Blum and Ariel Procaccia. Her research interests include learning 
theory and algorithmic economics. She is a recipient of the IBM 
and Microsoft Research Ph.D. fellowships and the Siebel 
Scholarship.
 
	  



Securing Computation on Untrusted Platforms 
 

Justin Holmgren 
Massachusetts Institute of Technology

In today's networked world, weak devices increasingly rely on remote servers both to 
store data and to perform costly computations.  Unfortunately, these servers may be 
easily hackable or otherwise untrustworthy.  Therefore, without assuming honest 
behavior on the server's part, we would like to guarantee two basic security objectives: 
 
1. (Correctness) It is possible to verify the correctness of the server's computations 
much more efficiently than by re-executing the computation. 
2. (Privacy) A server learns nothing about the computation it performs, other than 
(perhaps) the output. 
 
I will present recent results that achieve both these goals for arbitrary computations, 
and I will conclude with a discussion of open problems and future directions. 
 
 

 
Biography:
Justin Holmgren is a graduating PhD student at MIT, advised by 
Professor Shafi Goldwasser.  He has a general interest in 
theoretical computer science, especially cryptography and 
complexity.  His research so far has mainly focused on developing 
provably secure protocols which remove or reduce trust 
requirements in client-server interactions.  Within this area, he has 
particularly focused on the problem of securely outsourcing 
computation.
 
	  



Approximate MCMC in Theory and Practice 
 

James Johndrow 
Stanford University

Rapid growth in the number of samples in typical datasets and the number of 
parameters in statistical and other mathematical models poses significant 
computational challenges. A popular strategy for reducing the computational cost of 
Markov chain Monte Carlo (MCMC) is to replace the exact Markov kernel with an 
approximation that is less costly to simulate. We give a number of results on the 
convergence properties of these approximating Markov chains and the performance 
of time-averages in approximating expectations of functions with respect to the target 
measure. The talk is structured around several canonical examples that both motivate 
the results and illustrate the power and limitations of this approach to scaling up 
MCMC. While the applications I discuss are mainly statistical, the results are applicable 
to large classes of Markov chains.
 

 
Biography:
James Johndrow works at the interface of statistics, applied probability, 
and computational science. His primary research interest is scalable 
Bayesian computation. Work in this area includes characterizing the 
computational cost of MCMC, developing measures of optimality that 
incorporate both statistical and computational performance of 
procedures, designing improved algorithms for estimation of high-
dimensional statistical models, and constructing a theory of 
approximating Markov chains. Other topics include point processes 
with applications in multivariate extreme value theory and 
phylodynamics. James also has several active interdisciplinary projects 
in algorithmic fairness, population estimation and record linkage for 
human rights applications, A/B testing, population genetics, and 
treatment effect estimation for heavy-tailed distributions. James 
received a Ph.D. in Statistical Science from Duke in 2016, and is 
currently a Stein Fellow/Lecturer in the Statistics department at 
Stanford.
 
	  



Inverse Problems and Unsupervised Learning 
with Applications to Cryo-Electron Microscopy 

 
Roy Lederman 
Princeton University

Cryo-Electron Microscopy (cryo-EM) is an imaging technology that is revolutionizing 
structural biology; the Nobel Prize in Chemistry 2017 was recently awarded to Jacques 
Dubochet, Joachim Frank and Richard Henderson “for developing cryo-electron microscopy 
for the high-resolution structure determination of biomolecules in solution".
Cryo-electron microscopes produce a large number of very noisy two-dimensional projection 
images of individual frozen molecules. Unlike related methods, such as computed 
tomography (CT), the viewing direction of each image is unknown. The unknown directions, 
together with extreme levels of noise and additional technical factors, make the 
determination of the structure of molecules challenging.
While other methods for structure determination, such as x-ray crystallography and nuclear 
magnetic resonance (NMR), measure ensembles of molecules, cryo-electron microscopes 
produce images of individual molecules. Therefore, cryo-EM could potentially be used to 
study mixtures of different conformations of molecules. Indeed, current algorithms have been 
very successful at analyzing homogeneous samples, and can recover some distinct 
conformations mixed in solutions, but, the determination of multiple conformations, and in 
particular, continuums of similar conformations (continuous heterogeneity), remains one of 
the open problems in cryo-EM.
I will discuss a one-dimensional discrete model problem, Heterogeneous Multireference 
Alignment, which captures many of the group properties and other mathematical properties 
of the cryo-EM problem. I will then discuss different components which we are introducing in 
order to address the problem of continuous heterogeneity in cryo-EM: 1. “hyper-molecules,” 
the mathematical formulation of truly continuously heterogeneous molecules, 2. 
Computational and numerical tools for formulating associated priors, and 3. Bayesian 
algorithms for inverse problems with an unsupervised-learning component for recovering 
such hyper-molecules in cryo-EM.

 
Biography:
Roy Lederman is a postdoc at the Program in Applied and 
Computational Mathematics at Princeton University, working with 
Amit Singer. Before joining Princeton, he spent a year as a Gibbs 
Assistant Professor at Yale University, where he had completed his 
PhD in Applied Mathematics, working with Vladimir Rokhlin and 
Ronald Coifman. Roy holds a BSc in Electrical Engineering and a 
BSc in Physics from Tel Aviv University.
 
	  



Interactive Algorithms for Multiple Hypothesis Testing 
 

Aaditya Ramdas 
UC Berkeley

Data science is at a crossroads. Each year, thousands of new data scientists are 
entering science and technology, after a broad training in a variety of fields. Modern 
data science is often exploratory in nature, with datasets being collected and 
dissected in an interactive manner. Classical guarantees that accompany many 
statistical methods are often invalidated by their non-standard interactive use, 
resulting in an underestimated risk of falsely discovering correlations or patterns. It is a 
pressing challenge to upgrade existing tools, or create new ones, that are robust to 
involving a human-in-the-loop. 
 
In this talk, I will describe two new advances that enable some amount of interactivity 
while testing multiple hypotheses, and control the resulting selection bias. I will first 
introduce a new framework, STAR, that uses partial masking to divide the available 
information into two parts, one for selecting a set of potential discoveries, and the 
other for inference on the selected set. I will then show that it is possible to flip the 
traditional roles of the algorithm and the scientist, allowing the scientist to make post-
hoc decisions after seeing the realization of an algorithm on the data. The theoretical 
basis for both advances is founded in the theory of martingales : in the first, the user 
defines the martingale and associated filtration interactively, and in the second, we 
move from optional stopping to optional spotting by proving uniform concentration 
bounds on relevant martingales. 
 
This talk will feature joint work with (alphabetically) Rina Barber, Jianbo Chen, Will 
Fithian, Kevin Jamieson, Michael Jordan, Eugene Katsevich, Lihua Lei, Max 
Rabinovich, Martin Wainwright, Fanny Yang and Tijana Zrnic.
  

Biography:
Aaditya Ramdas is a postdoctoral researcher in Statistics and EECS 
at UC Berkeley, advised by Michael Jordan and Martin Wainwright. 
He finished his PhD in Statistics and Machine Learning at CMU, 
advised by Larry Wasserman and Aarti Singh, winning the Best 
Thesis Award in Statistics. A lot of his research focuses on modern 
aspects of reproducibility in science and technology — involving 
statistical testing and false discovery rate control in static and 
dynamic settings. 
 
 
	  


