IQIM Postdoctoral and Graduate Student Seminar

Friday January 23, 2015 4:30 PM

Superfluid Optomechanics

Speaker: Laura DeLorenzo, Applied Physics, Caltech
Location: East Bridge 114

Abstract:

I will discuss recent results in which we couple the low loss acoustic motion of superfluid He-4 to a high Q, superconducting niobium TE011 microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as 3*10^7. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching 10^11 may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as a frequency tunable, ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources. I will outline the requirements of the optomechanical structure and the microwave field required for these experiments.

Ref: L. A. De Lorenzo & K. C. Schwab, New J. Phys. 16, 113020 (2014)

 

Series IQIM Postdoctoral and Graduate Student Seminar Series

Contact: Marcia Brown at 626-395-4013 marciab@caltech.edu